Rapid and simple kinetics screening assay for electrophilic dermal sensitizers using nitrobenzenethiol.
نویسندگان
چکیده
The need for alternatives to animal-based skin sensitization testing has spurred research on the use of in vitro, in silico, and in chemico methods. Glutathione and other select peptides have been used to determine the reactivity of electrophilic allergens to nucleophiles, but these methods are inadequate to accurately measure rapid kinetics observed with many chemical sensitizers. A kinetic spectrophotometric assay involving the reactivity of electrophilic sensitizers to nitrobenzenethiol was evaluated. Stopped-flow techniques and conventional UV spectrophotometric measurements enabled the determination of reaction rates with half-lives ranging from 0.4 ms (benzoquinone) to 46.2 s (ethyl acrylate). Rate constants were measured for seven extreme, five strong, seven moderate, and four weak/nonsensitizers. Seventeen out of the 23 tested chemicals were pseudo-first order, and three were second order. In three out of the 23 chemicals, deviations from first and second order were apparent where the chemicals exhibited complex kinetics whose rates are mixed order. The reaction rates of the electrophiles correlated positively with their EC3 values within the same mechanistic domain. Nonsensitizers such as benzaldehyde, sodium lauryl sulfate, and benzocaine did not react with nitrobenzenethiol. Cyclic anhydrides, select diones, and aromatic aldehydes proved to be false negatives in this assay. The findings from this simple and rapid absorbance model show that for the same mechanistic domain, skin sensitization is driven mainly by electrophilic reactivity. This simple, rapid, and inexpensive absorbance-based method has great potential for use as a preliminary screening tool for skin allergens.
منابع مشابه
Hazard identification of strong dermal sensitizers.
Dermal reactions are the most frequently reported chemical health-related occupational hazard. Identifying dermal sensitizers is important for improving workplace safety. This paper takes a close look at the physico-chemical properties and results from the Local Lymph Node Assay (LLNA) to better understand and predict potent dermal sensitizers. The LLNA was used to identify 28 pharmaceutical ag...
متن کاملQuantitative Bacterial Micro-Assay for Rapid Diagnosis of Galactosemia: Application in Galactosemia Neonatal Screening
In the present study a new economic and rapid bacterial micro-assay for simultaneous detection and quantitative measurement of serum galactose was developed. Analysis of the standard curve showed a linearity range for galactose from 2 mg/dL to 180 mg/dL with a regression equation of Y = 0.013X ? 0.083; R² = 0.962. The advantage of the method is its ability to measure serum galactose quantitativ...
متن کاملEvaluation of the GARD assay in a blind Cosmetics Europe study.
Chemical hypersensitivity is an immunological response towards foreign substances, commonly referred to as sensitizers, which gives rise primarily to the clinical symptoms known as allergic contact dermatitis. For the purpose of mitigating risks associated with consumer products, chemicals are screened for sensitizing effects. Historically, such predictive screenings have been performed using a...
متن کاملRapid Screening of Toxigenic Vibrio cholerae O1 Strains from South Iran by PCR-ELISA
Background: The ability to sensitively detect Vibrio cholera with PCR-ELISA method represents a considerable advancement over alternative more time-consuming methods for detection of this pathogen. The aim of this research is to evaluate the suitability of a PCR-enzyme-linked immunosorbent assay for sensitive and rapid detection of V. cholera O1. Methods: The 398-bp sequence of a gene that cod...
متن کاملAllergic contact sensitizing chemicals as environmental carcinogens.
Chemicals that were bioassayed by the National Toxicology Program (NTP) and that also produce allergic dermatitis (ACD) in humans were evaluated for their tumorigenic characteristics. The impetus for the study was that most contact sensitizers, i.e., those that produce ACD, and genotoxic carcinogens are chemically similar in that they are electrophilic, thereby producing adducts on macromolecul...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chemical research in toxicology
دوره 23 5 شماره
صفحات -
تاریخ انتشار 2010